
AFRL-AFOSR-VA-TR-2015-0248

Virtual Machine-level Software Transactional Memory: Principles, Techniques, and
Implementation

Binoy Ravindran
VIRGINIA POLYTECHNIC INST AND STATE UNIVERSITY

Final Report
08/13/2015

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTC
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

10-08-2015
2. REPORT TYPE

Final Report
3. DATES COVERED (From - To)

July 1, 2014 -- June 30, 2015
4. TITLE AND SUBTITLE

Virtual Machine-level Software Transactional Memory: Principles, Techniques, and
Implementation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

AFOSR FA9550-14-1-0143

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ravindran, Binoy

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Virginia Polytechnic Institute and State University
1880 Pratt Dr, Suite 2006
Blacksburg, VA 24060-3580

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research (AFOSR)
801 N Randolph St.,
Arlington VA 22203
Program Officer: Dr. Kathleen Kaplan, System and Software, RTA2-9, Phone: 703-696-7312,
kathleen.kaplan@us.af.mil

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution A -- Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Software transactional memory (STM) has emerged as an easy to program synchronization abstraction for multicore computer architectures. But
performance of current STM frameworks are inferior and heavily influenced by infrastructure resource management (e.g., operating system
scheduling, garbage collection, memory allocation). The project’s first major result is ByteSTM, a virtual machine-level Java STM implementation
that is built by extending the Jikes RVM. The project modified Jikes RVM’s optimizing compiler to transparently support implicit transactions.
Being implemented at the VM-level, which enables direct memory accesses, ByteSTM avoids Java garbage collection overhead by manually
managing memory for transactional metadata, and provides pluggable support for implementing different STM algorithms. Three well-known STM
algorithms have been integrated into ByteSTM: TL2, NOrec, and RingSTM. The project’s experimental studies revealed throughput improvement
over other non-VM STMs by 6–70% on micro-benchmarks and by 7–60% on macro-benchmarks. ByteSTM is open-source, publicly available
(http://hydravm.org/bytestm/), and is used by the TM community.
15. SUBJECT TERMS
Concurrency, synchronization, transactional memory, multicore

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

1

19a. NAME OF RESPONSIBLE PERSON
Dr. Binoy Ravindran a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U 19b. TELEPHONE NUMBER (Include area code)
540-231-3777

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0

Reset DISTRIBUTION A: Distribution approved for public release.

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year and
be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written,
e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov
1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND

ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.

Enter all unique alphanumeric report numbers assigned by
the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)

AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).

Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are
indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition number,
etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top
and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the abstract.
Enter UU (Unclassified Unlimited) or SAR (Same as
Report). An entry in this block is necessary if the abstract
is to be limited.

Standard Form 298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release.

1

Virtual Machine-level Software Transactional Memory:
Principles, Techniques, and Implementation

Final report for AFOSR Grant FA9550-14-1-0143
PI: Binoy Ravindran

ECE Department, Virginia Tech
302 Whittemore Hall, Blacksburg, VA 24061

Phone: 540-231-3777, Fax: 540-231-3362, E-mail: binoy@vt.edu

Abstract

Software transactional memory (STM) has emerged as an easy to program synchronization
abstraction for multicore computer architectures. But performance of current STM frameworks
are inferior and heavily influenced by infrastructure resource management.

The project’s first major result is ByteSTM, a virtual machine-level Java STM implemen-
tation. Being implemented at the VM-level, which enables direct memory accesses, ByteSTM
avoids Java garbage collection overhead by manually managing memory for transactional meta-
data, and provides pluggable support for implementing different STM algorithms. The project’s
experimental studies revealed throughput improvement over other non-VM STMs by 6-70% on
micro-benchmarks and by 7-60% on macro-benchmarks. ByteSTM is publicly release as open-
source.

The project’s second major result is a set of theoretical results on ensuring the Disjoint-
Access Parallelism (DAP) property for STM implementations. Assumed a DAP TM that provides
invisible and wait-free read-only transactions, the project proved that relaxing the Real-Time
Order (RTO) is necessary. This result motivated the definition of Witnessable Real-Time Order,
a weaker variant of RTO that restricts RTO to directly conflicting transactions only. Finally, the
project established lower bounds on the time and space complexity of DAP TM implementations.

DISTRIBUTION A: Distribution approved for public release.

I. Overview of Project Achievements

This project investigates theoretical and practical aspects of Software Transactional Memory
(STM) implementations. STM is a growing programming abstraction for developing concurrent
applications. With STM, the complexity of synchronizing multithreaded access to a set of shared
data (or objects hereafter) is no longer a burden for the application programmer; they can simply
focus on the application business logic and rely on the STM library to guarantee correct concurrent
execution. Thanks to STM, the effort of designing, developing, and maintaining a concurrent,
multithreaded application is significantly alleviated.

The project’s most significant accomplishment towards the practice of STM is the design and
implementation of ByteSTM [31], [30], a virtual machine-level Java STM implementation built by
extending Jikes RVM. In ByteSTM, a transaction is not restricted to methods and can surround
any block of code. Memory bytecode instructions reachable from a transaction are translated such
that the resulting native code executes transactionally. Given its JVM integration, ByteSTM
can access, allocate, and manage memory directly, thus overcoming restrictions of the current
JVM design. ByteSTM has a modular architecture, which allows different STM algorithms to be
easily plugged in (three well-known algorithms have been already: TL2 [12], RingSTM [37], and
NOrec [11]). The conducted experimental study revealed a 6-70% throughput improvement over
other non-VM STMs on micro-benchmarks and a 7-60% improvement on macro-benchmarks.

ByteSTM is open source and is freely available at http://hydravm.org/bytestm. It provides
usable and high-performance STM support for Java applications, and has been transitioned to the
STM community at large with an increasing number of citations (e.g., [15], [36]). It contributes
to the broad dissemination of the STM abstraction in the (not only research) community.

The project’s most significant accomplishment towards the theory of STM is a set of results
regarding the impossibility, possibility, and inherent cost of STM implementations that provide
the Disjoint-Access Parallelism (DAP) property [32]. DAP is considered one of the most desirable
properties for providing scalable STM algorithms; roughly, two concurrent threads are allowed to
conflict on some shared resource (e.g., objects or meta-data) only if the application itself demands
that. Given its appealing purpose, this project has investigated what can (and cannot) be done
while preserving DAP. First, it was proven that relaxing Real-Time Order (RTO) is necessary
for an STM implementation that ensures DAP as well as two properties that are regarded as
important for maximizing efficiency in read-dominated workloads; namely, having invisible and
wait-free read-only transactions. This result provided the base for introducing Witnessable Real-
Time Order (WRTO), a weaker variant of RTO that demands enforcing RTO only between
directly conflicting transactions. WRTO makes it possible to design a strictly DAP STM with
invisible and wait-free read-only transactions while preserving strong progressiveness for write
transactions and an isolation level known in literature as Extended Update Serializability [2] and
establishes a lower bound on the time and space complexity of DAP STM implementations that
have invisible and wait-free read-only transactions.

The project’s findings enrich the common knowledge of DAP STM implementations and provide
a better understanding for STM designers about the inherent costs and limitations of adopting
DAP.

The rest of this report is organized as follows: in Section II we detail ByteSTM, the major
achievement towards the practice of STM; in Section III we provide the description of the major
accomplishments towards the theory of STM; and in Section IV we conclude the report by
summarizing the project’s deliverables (i.e., software and publications).

II. ByteSTM, a Java virtual machine-based STM implementation

Transactional Memory (TM) [21] is an attractive programming model for multicore architec-
tures that promises to help the programmer in the implementation of parallel and concurrent

DISTRIBUTION A: Distribution approved for public release.

applications. TM has been proposed in hardware (HTM, e.g., [10]), in software (STM, e.g., [27]),
and in combination (HybridTM, e.g., [28]). HTM has the lowest overhead, but transactions
are limited in space and time. STM does not have such limitations, but has higher overhead.
HybridTM avoids these limitations. Given STM’s hardware-independence, which is a compelling
advantage, we focus on STM. STM implementations can be classified into three categories: library-
based, compiler-based, and virtual machine-based.

- Library-based STMs add transactional support without changing the underlying language.
Instrumentation is used to transparently add transactional code to the atomic sections (e.g.,
begin, transactional reads/writes, commit).

- Compiler-based STMs (e.g., [25], [23]) support implicit transactions transparently by adding
new language constructs (e.g., atomic). The compiler then generates transactional code that
calls the underlying STM library. Compiler-based STMs can optimize the generated code and
do overall program optimization.

- VM-based STMs, which have been less studied, include [20], [9], [38], [1]. Transactional support
is implemented inside the JVM to get the benefits of a VM-managed environment.

ByteSTM is built by modifying Jikes RVM [3], a Java research virtual machine implemented
in Java, using the optimizing compiler. ByteSTM is implicitly transactional: the program only
specifies the start and end of a transaction and all memory operations (loads and stores) inside
these boundaries are implicitly transactional. This simplifies the code inside the atomic block and
also eliminates the need for making a transactional version of each memory load/store instruction,
thereby keeping the number of added instructions minimal. When xBegin (i.e., the transaction’s
beginning) is executed, the thread enters transactional mode. In this mode, all writes are isolated
and execution of instructions proceeds optimistically until xCommit (i.e., the transaction’s commit)
is executed. At that point, the transaction is checked against other concurrent transactions for
conflicts. If there are no conflicts, the transaction is allowed to commit and only at this point do
all transaction modifications become externally visible to other transactions. If the commit fails,
all modifications are discarded and the transaction restarts from the beginning.

ByteSTM monitors memory accesses at the field level, not at the object level. Field-based
granularity scales well and eliminates false conflicts resulting from two transactions changing
different fields of the same object [27].

A. Metadata

Working at the VM level allows changing thread headers without modifying program code. For
each thread that executes transactions, the metadata added includes the read-set, the write-set,
and other STM algorithm-specific metadata. Metadata added to the thread header is used by all
transactions executed in the thread. Since each thread executes one transaction at a time, there
is no need to create new metadata for each transaction, allowing reuse. Also, accessing a thread’s
header is faster than using Java’s ThreadLocal abstraction.

B. Memory Model

At the VM-level, the physical memory addresses of each object’s fields can be easily obtained.
Since ByteSTM is field-based, the address of each field is used to track memory reads and writes.
A conflict occurs only if two transactions modified the same field of an object. Since arrays are
objects in Java, memory accesses to arrays are tracked at the element level, which eliminates
unnecessary aborts.

An object instance’s field’s absolute address equals the object’s base address plus the field’s
offset. A static object’s field’s absolute address equals the global static memory space’s address
plus the field’s offset. Finally, an array element’s absolute address equals the array’s address plus

DISTRIBUTION A: Distribution approved for public release.

the element’s index in the array (multiplied by the element’s size). Thus, our memory model is
simplified as: base object plus an offset for all cases.

Using absolute addresses is limited to non-moving GCs only (i.e., a GC that releases unreachable
objects without moving reachable objects, like the mark-and-sweep GC). In order to support
moving GCs, a field is represented by its base object and the field’s offset within that object.
When the GC moves an object, only the base object’s address is changed. All offsets remain the
same. ByteSTM’s write-set is part of the GC root-set. Thus, the GC automatically changes the
saved base objects’ addresses as part of its reference-updating phase.

To simplify how the read-set and write-set are handled, we use a unified memory access scheme.
At a memory load, the information needed to track the read includes the base object and the
offset within that object of the read field. At a memory store, the base object, the field’s offset,
the new value, and the size of the value are the information used to track the write. When data
is written back to memory, the write-set information (base object, offset, value, and length of
the location) is used to store the committed values correctly. This abstraction also simplifies the
code, as there is now no need to differentiate between different data types because they are all
handled as a sequence of bytes in the memory. The result is simplified code that handles all data
types in the same way, yielding faster execution.

ByteSTM has been designed to natively support opacity [17]. In fact, when an inconsistent
read is detected in a transaction, the transaction is immediately aborted. Local variables are
then restored and the transaction is restarted by throwing an exception. The exception is caught
just before the end of the transaction loop so that the loop continues again. Note that throwing
an exception is not expensive if the exception object is preallocated, eliminating the overhead
of creating a stack trace every time the exception is thrown. A stack trace is not required for
this exception object because it is used only for doing a long jump. The result is similar to
setjmp/longjmp in C.

C. Garbage Collector

One major drawback of implementing STM for Java (or any managed language) is the GC [29].
STM uses metadata to keep track of transactional reads and writes, which requires allocating
memory for the metadata and then releasing it when not needed. Frequent memory allocation
(and implicit deallocation) forces the GC to run more frequently to release unused memory,
increasing STM overhead.

Some STM implementations solve this problem by reducing memory allocations and recycling
allocated memory. For example, [27] uses object pooling, wherein objects are allocated from and
recycled back to a pool of objects (with the heap used when the pool is exhausted). However,
allocation is still done through the Java memory system and the GC checks if the pooled objects
are still referenced.

Since ByteSTM is integrated into the VM, its memory allocation and recycling is done outside
the control of the Java memory system: memory is directly allocated and recycled. STM’s memory
requirement, in general, has a specific lifetime. When a transaction starts, it requires a specific
amount of metadata, which remains active for the transaction’s duration. When the transaction
commits, the metadata is recycled. Thus, manual memory management does not increase the
complexity or overhead of the implementation.

The GC causes another problem for ByteSTM, however. ByteSTM stores intermediate changes
in a write buffer. Thus, the program’s newly allocated objects will not be referenced by the
program’s variables. The GC scans only the program’s stack to find objects that are no longer
referenced. Hence, it will not find any reference to the newly allocated objects and will recycle
their memory. When ByteSTM commits a transaction, it will therefore be writing a dangling

DISTRIBUTION A: Distribution approved for public release.

pointer. We solve this problem by modifying the behavior of adding an object to the write-set.
Instead of storing the object address in the write-set entry value, the object is added to another
array (i.e., the “objects array”). The object’s index in the objects array is stored in the write-set
entry value. Specifically, if an object contains another object (e.g., a field that is a reference), we
cannot save the field value as a primitive type (e.g., the absolute address) since the address can
be changed by the GC. The field value is therefore saved as an object in the objects array, which
is available to the set of roots that the GC scans. The write-set array is another source of roots.
So, the write-set contains the base objects and the objects array contains the object fields within
the base objects. This prevents the GC from reclaiming the objects. Our approach is compatible
with all GCs available in Jikes RVM and we believe that this approach is better than modifying
a specific GC.

D. STM Algorithms

ByteSTM’s modular architecture allows STM algorithms to be easily “plugged in.” We imple-
mented three algorithms: TL2 [12], RingSTM [37], and NOrec [11]. Our rationale for selecting
these three is that they are well-known in literature. Additionally, they cover different points in
the performance/workload tradeoff space: TL2 is effective for long transactions and a moderate
number of reads, and it scales well with a large number of writes; RingSTM is effective for
transactions with a high number of reads and a small number of writes; NOrec has better
performance with a small number of cores and has no false conflicts since it validates by value.

Plugging a new algorithm into ByteSTM is straightforward: one needs to implement read
barriers, write barriers, transaction start, transaction end, and any other algorithm-specific helper
methods. All these methods are in one class, “STM.java”. No prior knowledge of Jikes RVM is
required and porting a new algorithm to ByteSTM requires only understanding the ByteSTM
framework.

E. Experimental Evaluation

To understand how ByteSTM, a VM-level STM, stacks up against non VM-level STMs, we
conducted an extensive experimental study. The performance study also wanted to investigate
whether any performance gain from a VM-level implementation is algorithm-independent. Thus,
we compared ByteSTM against non-VM STMs, with the same algorithm inside the VM versus
“outside”it. Our competitor non-VM STMs include Deuce, ObjectFabric, Multiverse, and JVSTM.

We used a 48-core machine (four AMD Opteron Processors, each with 12 cores running at 1700
MHz) with 16 GB of RAM. The machine ran Ubuntu Linux 10.04 LTS 64-bit. Our test applications
included both micro-benchmarks (i.e., data structures) and a macro-benchmark (i.e., STAMP [8]).
1) Micro-Benchmarks: Each data structure was used to implement a sorted integer set interface

with set size 256 and set elements in the range 0 to 65536. Writes represented add and remove
operations, and they kept the set size approximately constant during the experiments. Different
ratios of writes and reads were used to measure performance under different levels of contention:
20% and 80% writes. We also varied the number of threads in exponential steps up to 48.

Linked-list operations were characterized by a high number of reads (ranging from 70 at low
contention to 270 at high contention), caused by traversing the list from the head to the required
node, and only a few writes (about 2). This resulted in long transactions. Moreover, we observed
that such transactions suffer from a high number of aborts (our abort ratio was from 45% to
420%), since each transaction keeps all visited nodes in its read-set and any modification to those
nodes by another transaction’s add or remove operation will abort the transaction.

Figure 1 shows the results. ByteSTM has three curves: RingSTM, TL2, and NOrec. In all
cases, ByteSTM/NOrec achieved the best performance because it uses an efficient read-set data

DISTRIBUTION A: Distribution approved for public release.

0

50

100

150

200

250

300

1 2 4 8 16 32 64

T
h
ro
u
g
h
p
u
t
(1
0
0
0
tx
/s
e
c)

Number of threads

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64

T
h
ro
u
g
h
p
u
t
(1
0
0
0
tx
/s
e
c)

Number of threads

Non-VM/RingSTM
ByteSTM/TL2

ByteSTM/RingSTM Non-VM/TL2
ByteSTM/NOrec
Non-VM/NOrec

Deuce/TL2
Object Fabric

Multiverse

JVSTM

(a) 20% writes. (b) 80% writes.

Fig. 1

Throughput for Linked-List. Higher is better.

structure based on open addressing hashing. ByteSTM/RingSTM came next because it has no
read-set and uses a bloom filter as a read signature, with the performance being affected by
the bloom filter’s false positives. This was followed by ByteSTM/TL2, which was affected by its
sequential read-set. Deuce’s performance was the best between other STM libraries. Other STMs
performed similarly, and all of them had very low throughput. Non-VM implementations of each
algorithm performed in a similar manner but with lower throughput. ByteSTM outperformed
non-VM implementations by 15–70%.

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 4 8 16 32 64

Ti
m

e
(m

s)

Number of threads

0

2000

4000

6000

8000

10000

12000

14000

Ti
m

e
(m

s)

Number of threads

Non-VM/RingSTM
ByteSTM/TL2

ByteSTM/RingSTM Non-VM/TL2
ByteSTM/NOrec
Non-VM/NOrec

Deuce/TL2

(a) Low contention. (b) High contention.

1 2 4 8 16 32 64

Fig. 2

Execution time under Vacation. Lower is better.

2) Macro-Benchmark: Vacation, an application from the STAMP suite, has medium-length
transactions, medium read-sets, medium write-sets, and long transaction times (compared with
other STAMP benchmarks). We conducted two experiments: low contention and high contention.
ByteSTM/NOrec had the best performance under both low and high contention conditions.
The efficient read-set implementation contributed to its performance. However, it did not scale
well: ByteSTM/RingSTM suffered from a high number of aborts due to false positives and long
transactions, so it started with good performance but degraded quickly. ByteSTM outperformed
non-VM implementations by an average of 15.7% in low contention and 18.3% in high contention.

DISTRIBUTION A: Distribution approved for public release.

III. Disjoint-access parallelism: impossibility, possibility, and cost of STM
implementations

Disjoint-access parallelism (or DAP) [26] is a long-studied property that assesses the ability
of a STM implementation to avoid any contention on shared objects (also called base objects)
between transactions that access disjoint data sets.

The existing STM literature has established that having DAP and serializability of committed
transactions in the same STM implementation is impossible under certain conditions for read-
only transactions or different progress guarantees [4], [34], [16], [14], [7]. In particular, Attiya
et al. [4] proved that a STM cannot be weak DAP (a weaker version of the original DAP [26])
while ensuring minimal progressiveness [19] for write transactions (a progress condition weaker
than obstruction-freedom [22]) and providing invisible and wait-free read-only transactions if the
correctness guarantee is (Strict) Serializability [6]. More recently, Bushkov et al. [7] proved the
impossibility of implementing a strict DAP [16] (a stronger version of the original DAP [26])
STM that guarantees obstruction-freedom and Weak Adaptive Consistency, which is weaker than
Serializability.

Unfortunately, the several consistency criteria that have been proposed for STM, such as
opacity [17], virtual world consistency [24], and TMS1 [13], require at least serializability of
committed transactions. However, the constraint for read-only transactions to never change the
status of memory, i.e., being invisible, as well as their ability to always commit in a finite number
of steps, i.e., being wait-free, are desirable requirements for enhancing the performance of STM
in the case of read-dominated workloads. Therefore, this project pursued the objective of finding
the strongest correctness and progress guarantees that a DAP STM algorithm can ensure while
having invisible and wait-free read-only transactions. In addition, for those guarantees, the project
studied unavoidable costs to consider in terms of both time and space complexity.

In this context, we proved two novel impossibility results that have to be taken into account
while designing a DAP STM. Specifically, we proved that if one defines as target correctness cri-
terion any criterion that includes Real-Time Order (RTO), i.e., guaranteeing that non-concurrent
transactions appear as though they were executed in the order of their commits, then it is
impossible to ensure wait-free read-only transactions, obstruction-free write transactions, and
the weakest form of DAP. We also proved that, even when assuming weakly progressive write
transactions [18], we still have an impossibility result if we enforce invisibility for read-only
transactions.

These results highlight the need for relaxing RTO in order to implement any DAP STM that
guarantees wait-free and invisible read-only transactions. Indeed, we showed that, by adopting a
weaker variant of RTO, i.e., Witnessable Real-Time Order (WRTO), which only enforces RTO
among directly conflicting transactions, it is possible to design a STM with wait-free and invisible
read-only transactions. In particular, we proposed the first STM implementation that guarantees
the strongest variant of DAP, strong progressiveness for write transactions, and wait-free and
invisible read-only transactions. This STM provides WRTO and an interesting consistency crite-
rion strictly weaker than opacity, i.e., Extended Update Serializability [2] (EUS). EUS guarantees
serializability of committed write transactions, and it ensures that each transaction observes a
state produced by a serializable schedule.

Despite the theoretical relevance of this algorithm, the proposed STM comes with overheads,
which can hinder its practical relevance. However, we proved that these costs are actually nec-
essary, by deriving two lower bounds on the space and time complexity of any DAP STM that
guarantees wait-free and invisible read-only transactions, WRTO, and obstruction-freedom or
weak progressiveness for write transactions, when considering a consistency criterion strictly
weaker than EUS, i.e., Consistent View [2]. Informally, Consistent View allows a specific type of

DISTRIBUTION A: Distribution approved for public release.

non-serializable schedule, but it ensures that transactions read from a causally consistent snapshot
and prevents observing the effects of aborted transactions.

A. Impossibility Results on Disjoint-Access Parallel STM

The first theoretical result of this project regards the possibility of having a DAP STM that
guarantees RTO. This is a fundamental question because it only focuses on the correctness of non-
concurrent transactions, which should appear as executed in the order defined by their commits
(by preserving RTO indeed), and the result is independent of any other correctness guarantee
defined for concurrent transactions. We proved that it is impossible to design such a STM if that
has to also guarantee wait-free read-only transactions and obstruction-free write transactions.

The result is independent of the visibility of read-only transactions, therefore also proving that
there cannot exist any STM that meets the lower bound defined in [4] if write transactions are
obstruction-free. Indeed, if on one side the lower bound defines a necessary condition on the
number of write operations a wait-free read-only transaction has to apply in a Strict Serializable
and DAP STM, on the other side our result states that those write operations are not sufficient
to guarantee RTO and hence Strict Serializability (since it includes RTO).

We also investigated whether or not we can combine all the properties above by considering
weakly progressive write transactions (namely, write transactions abort only if they encounter a
conflict). In this case we proved that the impossibility of combining RTO and wait-free read-only
transactions still holds if read-only transactions are invisible.

The intuition to prove the two impossibility results is the following: we showed that any DAP
STM that guarantees WRTO must necessarily accept a history that violates RTO between two
non-conflicting transactions.

B. A Strict Disjoint-Access Parallel STM

Since our impossibility results proved that RTO cannot be guaranteed by a DAP STM that
provides wait-free and invisible read-only transactions, we also investigated relaxing RTO in order
to have such a STM. The result is a STM obtained by adopting Witnessable Real-Time Order
(WRTO): it is possible to implement a STM that guarantees the strongest variant of DAP, wait-
free and invisible read-only transactions, progressive write transactions, and a correctness criterion
whose semantics are very close to those provided by opacity or virtual world consistency. This
consistency criterion, known in literature as Extended Update Serializability (EUS) [2], [33],
guarantees the serializability of the history of committed write transactions — hence ensuring
that the state of the STM is updated without anomalies. Further, analogously to opacity, virtual
world consistency, and TMS1, EUS provides Consistent View.

Intuitively, the above properties are achieved as follows. Committed write transactions can be
guaranteed to be serializable without sharing any global information and only leveraging metadata
associated with transactional objects by adopting a scheme similar to the DAP version of TL2 [5].
On the other hand, Consistent View and WRTO can be ensured by combining a multi-version
scheme that allows a read operation by a transaction T to never incur wait conditions and to
always return the right version v such that v was not committed by a transaction T ′ that causally
follows T , i.e., v is a correct state observable by T . This is achievable without sharing any global
information (e.g., a global clock, which would violate DAP) and without applying any modification
during the execution of a read operation (invisible read-only transactions) by just exploiting
metadata associated with the committed versions in order to detect the causal dependencies of
commit events.

DISTRIBUTION A: Distribution approved for public release.

C. Time Complexity of Disjoint-Access Parallel STM implementations

Despite the theoretical relevance of the proposed STM, we also proved that it comes with
a non-negligible overhead: a read operation of a read-only transaction may accomplish k · No

steps in order to return the correct value, where k is the number of versions of a transactional
object and No is the total number of transactional objects. We proved that this cost is necessary
even considering only Consistent View and WRTO. In particular, we investigated the costs a DAP
STM has to pay if it guarantees wait-free and invisible read-only transactions when the correctness
guarantee is Consistent View. Roughly, this means that every read operation does not observe
any incorrect state as long as write transactions produce correct states. We also suppose that the
STM guarantees WRTO in order to rule out any trivial implementation of wait-free read-only
transactions in which read operations only observe the initial versions of the transactional objects.

The intuition behind the result is that such a STM cannot always ensure a constant cost for
handling any read operation because a read cannot rely on any shared timestamp to determine
the correct state to be observed (as for TL2 [12] or LSA [35]). In fact, if that were the case, then
the STM would trivially violate DAP. In particular, what we show is that the maximum number
of steps performed by any read operation of read-only transactions for determining whether a
version can be observed without violating Consistent View is Ω(No).

D. Space Complexity of Disjoint-Access Parallel STM implementations

In addition to showing the inherent temporal costs a DAP STM must pay in order to execute
invisible and wait-free read-only transactions, and if it has to also combine at least Consistent
View and WRTO, we also focused on the memory occupancy such a STM would require. That
is because the STM proposed in this project requires each version of a transactional object to
keep a vector clock as big as the maximum number of concurrent processes (Np). The outcome
of our investigation was analogous to the one obtained for the time complexity: in the common
case where Np is lesser than the number of objects (No), that spatial cost is necessary.

Furthermore, in general we proved a lower bound that holds assuming Consistent View as
correctness guarantee, WRTO, and either weak progressiveness or obstruction-freedom for write
transactions. If a DAP STM has to jointly ensure those properties then the space complexity for
each version of a transactional object is Ω(m), where m = min(No, Np).

To prove that, we used an innovative technique that shows an equivalence between the problem
of detecting cycles in the conflict graph of a history generated by DAP STM and determining
causality in a distributed message passing system. The intuition behind the proof is that whenever
a read-only transaction executes a read operation, it needs to detect whether that operation creates
a cycle with one anti-dependence edge (which would violate Consistent View) in the conflict graph
associated with the current history. Due to the existence of the DAP requirement, this check has to
be performed without indiscriminately accessing all the information associated with the conflict
graph, but only extracting this information via the base objects associated with the accessed
transactional objects.

DISTRIBUTION A: Distribution approved for public release.

IV. Summary of Project’s Deliverables: Software and Publications

The results accomplished by this project have been publicly released as open-source software
and research papers published at international conferences. In the following we summarize them:

- Software:

– ByteSTM is open-sourced and is freely available at http://hydravm.org/bytestm.

- Publications:

– M. Mohamedin, B. Ravindran, and R. Palmieri. Bytestm: Virtual machine-level java software
transactional memory. In Coordination Models and Languages, 15th International Confer-
ence, COORDINATION, Florence, Italy, June 3-5, 2013.

– M. Mohamedin. ByteSTM: Java Software Transactional Memory at the Virtual Machine
Level. Master’s thesis, Virginia Tech, 2012. Available at http://scholar.lib.vt.edu/theses/
available/etd-02222012-091827/.

– S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia. Disjoint-access parallelism:
Impossibility, possibility, and cost of transactional memory implementations. In ACM Sym-
posium on Principles of Distributed Computing, PODC, Donostia-San Sebastian, Spain, July
21-23, 2015.

References

[1] A. Adl-Tabatabai et al. The StarJIT compiler: A dynamic compiler for managed runtime environments. Intel
Technology Journal, 2003.

[2] A. Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transac-
tions. PhD thesis, 1999.

[3] B. Alpern, S. Augart, et al. The Jikes research virtual machine project: building an open-source research
community. IBM Syst. J., 44:399–417, January 2005.

[4] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel implementations of
transactional memory. Theory Comput. Syst., 49(4):698–719, 2011.

[5] H. Avni and N. Shavit. Maintaining Consistent Transactional States Without a Global Clock. In SIROCCO,
pages 131–140, 2008.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[7] V. Bushkov, D. Dziuma, P. Fatourou, and R. Guerraoui. The PCL Theorem. Transactions cannot be Parallel,
Consistent and Live. In SPAA, pages 178–187, 2014.

[8] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional applications for
multi-processing. In IISWC, September 2008.

[9] B. Carlstrom, A. McDonald, et al. The Atomos transactional programming language. ACM SIGPLAN Notices,
41(6):1–13, 2006.

[10] D. Christie, J. Chung, et al. Evaluation of AMD’s advanced synchronization facility within a complete
transactional memory stack. In EuroSys, pages 27–40, 2010.

[11] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining STM by Abolishing Ownership Records.
In PPoPP, pages 67–78. ACM, 2010.

[12] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In DISC, pages 194–208, 2006.
[13] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and verifying transactional

memory. Formal Asp. Comput., 25(5):769–799, 2013.
[14] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal constructions that ensure disjoint-access

parallelism and wait-freedom. In PODC, pages 115–124, 2012.
[15] V. Gramoli. More than you ever wanted to know about synchronization: synchrobench, measuring the impact

of the synchronization on concurrent algorithms. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015,
pages 1–10, 2015.

[16] R. Guerraoui and M. Kapalka. On Obstruction-free Transactions. In SPAA, pages 304–313, 2008.
[17] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPoPP, pages 175–184, 2008.
[18] R. Guerraoui and M. Kapalka. The Semantics of Progress in Lock-based Transactional Memory. In POPL,

2009.
[19] R. Guerraoui and P. Romano. Transactional Memory. Foundations, Algorithms, Tools, and Applications.

Springer, 2015.

DISTRIBUTION A: Distribution approved for public release.

[20] T. Harris and K. Fraser. Language support for lightweight transactions. ACM SIGPLAN Notices, 38(11):388–
402, 2003.

[21] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition. Morgan and Claypool Publishers,
2nd edition, 2010.

[22] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free Synchronization: Double-Ended Queues As an
Example. In ICDCS, pages 522–529, 2003.

[23] B. Hindman and D. Grossman. Atomicity via source-to-source translation. In Workshop on Memory system
performance and correctness, pages 82–91, 2006.

[24] D. Imbs and M. Raynal. Virtual World Consistency: A Condition for STM Systems (with a Versatile Protocol
with Invisible Read Operations). Theoretical Computer Science, 444:113–127, July 2012.

[25] Intel Corporation. Intel C++ STM Compiler, 2009. http://software.intel.com/en-us/articles/

intel-c-stm-compiler-prototype-edition/.
[26] A. Israeli and L. Rappoport. Disjoint-access-parallel Implementations of Strong Shared Memory Primitives. In

PODC, pages 151–160, 1994.
[27] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with Java STM. In MULTIPROG, 2010.
[28] S. Lie. Hardware support for unbounded transactional memory. Master’s thesis, MIT, 2004.
[29] F. Meawad et al. Collecting transactional garbage. In TRANSACT, 2011.
[30] M. Mohamedin. ByteSTM: Java Software Transactional Memory at the Virtual Machine Level. Master’s thesis,

Virginia Tech, 2012. Available at http://scholar.lib.vt.edu/theses/available/etd-02222012-091827/.
[31] M. Mohamedin, B. Ravindran, and R. Palmieri. Bytestm: Virtual machine-level java software transactional

memory. In Coordination Models and Languages, 15th International Conference, COORDINATION 2013,
Florence, Italy, June 3-5, 2013. Proceedings, pages 166–180, 2013.

[32] S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia. Disjoint-access parallelism: Impossibility,
possibility, and cost of transactional memory implementations. In ACM Symposium on Principles of Distributed
Computing, PODC ’15, Donostia-San Sebastian, Spain, July 21-23, 2015, 2015.

[33] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. When Scalability Meets Consistency: Genuine
Multiversion Update-Serializable Partial Data Replication. In ICDCS, pages 455–465, 2012.

[34] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In PODC, pages 16–25, 2010.
[35] T. Riegel, P. Felber, and C. Fetzer. A Lazy Snapshot Algorithm with Eager Validation. In DISC, pages 284–298,

2006.
[36] M. M. Saad, M. Mohamedin, and B. Ravindran. HydraVM: extracting parallelism from legacy sequential code

using STM. In HotPar. USENIX, 2012. hydravm.org.
[37] M. F. Spear, M. M. Michael, and C. von Praun. Ringstm: scalable transactions with a single atomic instruction.

In Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, SPAA ’08,
pages 275–284, New York, NY, USA, 2008. ACM.

[38] A. Welc et al. Transactional monitors for concurrent objects. In ECOOP, 2004.

DISTRIBUTION A: Distribution approved for public release.

Response ID:4895 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

binoy@vt.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

5402313777

Organization / Institution name

Virginia Tech

Grant/Contract Title
The full title of the funded effort.

Virtual Machine-level Software Transactional Memory: Principles, Techniques, and Implementation

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-14-1-0143

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Binoy Ravindran

Program Manager
The AFOSR Program Manager currently assigned to the award

Dr. Kathleen Kaplan

Reporting Period Start Date

07/01/2014

Reporting Period End Date

06/30/2015

Abstract

Software transactional memory (STM) has emerged as an easy to program synchronization abstraction for
multicore computer architectures. But performance of current STM frameworks are inferior and heavily
influenced by infrastructure resource management (e.g., operating system scheduling, garbage collection,
memory allocation).

The project’s first major result is ByteSTM (COORDINATION’13, TRANSACT’13), a virtual machine-level
Java STM implementation that is built by extending the Jikes RVM. The project modified Jikes RVM’s
optimizing compiler to transparently support implicit transactions. Being implemented at the VM-level,
which enables direct memory accesses, ByteSTM avoids Java garbage collection overhead by manually
managing memory for transactional metadata, and provides pluggable support for implementing different
STM algorithms. Three well-known STM algorithms have been integrated into ByteSTM: TL2, NOrec, and
RingSTM. The programmer can switch among them by simply changing one configuration parameter. This
enables easy evaluation of application performance under different STM concurrency controls. The
project’s experimental studies revealed throughput improvement over other non-VM STMs by 6–70% on
micro-benchmarks and by 7–60% on macro-benchmarks. ByteSTM is open-source, publicly available
(http://hydravm.org/bytestm/), and is used by the TM community.

DISTRIBUTION A: Distribution approved for public release.

The project’s second major result is a set of possibility and impossibility results on the feasibility of ensuring
the Disjoint-Access Parallelism (DAP) property for STM implementations (PODC’15). DAP is one of the
most desirable properties for maximizing TM’s scalability. The project investigated the possibility and
inherent cost of implementing a DAP TM that ensures the two most important properties for maximizing
performance of read-dominated workloads, namely, having invisible and wait-free read-only transactions.
The project proved that relaxing the Real-Time Order (RTO) is necessary to implement such a TM. This
result motivated the project to introduce Witnessable Real-Time Order (WRTO), a weaker variant of RTO
that demands enforcing RTO only between directly conflicting transactions. The project demonstrated that
adopting WRTO makes it possible to design a strictly DAP TM with invisible and wait-free read-only
transactions, while preserving strong progressiveness for write transactions and an isolation level known in
the literature as Extended Update Serializability. Finally, the project shed light on the inherent inefficiency
of DAP TM implementations that have invisible and wait-free read-only transactions, by establishing lower
bounds on the time and space complexity of such TMs.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF

The maximum file size for an SF298 is 50MB.

AFD-070820-035.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

report-v2.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

M. Mohamedin, B. Ravindran, and R. Palmieri. "Bytestm: Virtual machine-level Java software transactional
memory". In Coordination Models and Languages, 15th International Conference, COORDINATION,
Florence, Italy, June 3-5, 2013.

M. Mohamedin. "ByteSTM: Java Software Transactional Memory at the Virtual Machine Level". Master's
thesis, ECE Department, Virginia Tech, 2012. Available at http://scholar.lib.vt.edu/theses/available/etd-
02222012-091827/.

S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia. "Disjoint-access parallelism:
Impossibility, possibility, and cost of transactional memory implementations". In ACM Symposium on
Principles of Distributed Computing, PODC, Donostia-San Sebastian, Spain, July 21-23, 2015.

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

DISTRIBUTION A: Distribution approved for public release.

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary

Equipment/Facilities

Supplies

Total

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Aug 10, 2015 18:30:39 Success: Email Sent to: binoy@vt.edu

DISTRIBUTION A: Distribution approved for public release.

	DTIC_Title_Page_-_Virtual_Machine-level_Software_Transactional_Memory[1]
	FA9550-14-1-0143 SF298
	FA9550-14-1-0143 FINAL REPORT
	Overview of Project Achievements
	ByteSTM, a Java virtual machine-based STM implementation
	Metadata
	Memory Model
	Garbage Collector
	STM Algorithms
	Experimental Evaluation
	Micro-Benchmarks
	Macro-Benchmark

	Disjoint-access parallelism: impossibility, possibility, and cost of STM implementations
	Impossibility Results on Disjoint-Access Parallel STM
	A Strict Disjoint-Access Parallel STM
	Time Complexity of Disjoint-Access Parallel STM implementations
	Space Complexity of Disjoint-Access Parallel STM implementations

	Summary of Project's Deliverables: Software and Publications
	References

	FA9550-14-1-0143 SURV

